TDX 50C, TDX 100C, TDX 200C

The TDX50C, TDX100C and TDX200C Series of Surge Protection Devices (SPD) are designed to provide protection to service panels, load centers or where the SPD is directly connected to the electronic device requiring protection. Maximum protection will only be achieved if the SPD is properly installed. Please read the following installation instructions carefully and follow the instructions.

DANGER

DANGER: Electrical shock or burn hazard. Installation of this SPD should only be made by qualified personnel. Failure to lockout electrical power during installation or maintenance can result in fatal electrocution or severe burns.

CAUTION

CAUTION: Check to make sure system voltages do not exceed the SPD voltage requirement and the correct SPD voltage/model has been selected.

CAUTION

CAUTION: This unit must be installed in accordance with the National Electrical Code (ANSI/NFPA-70) and applicable local codes.

CAUTION

CAUTION: Ungrounded power systems are inherently unstable and can produce excessively high line-to-ground voltages during certain fault conditions. During these fault conditions any electrical equipment, including an SPD, may be subjected to voltages which exceed their designed ratings. This information is being provided to the user so that an informed decision can be made before installing any electrical equipment on an ungrounded power system.

NOTICE: Do not cut wires until the SPD is mounted and minimum wire lengths have been verified. All connection leads should be cut to minimum possible length; never coil or push aside excess length.

INSTALLATION INSTRUCTIONS

1. **Verify system voltage** by measuring L-N, L-G, L-L and N-G of the system. Confirm that the SPD is correctly rated for the system to which it is to be connected by comparing the measured voltages to the SPD voltage ratings shown on the product side rating label. The measured voltage should match the nominal operating voltage of the product, the maximum continuous operating voltage (MCOV) specifications must not be exceeded.

2. **Identify proper location for the SPD.** Locate the unit as close as physically possible to the panel being protected and as close to the electrical connection as possible so as to avoid excess lead lengths and the need for sharp bends in the wires. Mount top and bottom SPD flanges securely. Use appropriate cable glands to preserve the SPD/panel NEMA enclosure rating.

3. **Suitable for use on a Circuit Capable of Delivering Not More Than 200,000 rms symmetrical Amperes**

 Connect proper ground. An insulated grounding conductor that is identical in size and insulating material and thickness to the grounded and ungrounded circuit supply conductors, except that it is green with or without one or more yellow stripes, is to be installed as part of the circuit that supplies the TDX. The TDX is supplied with 814mm (3ft) long of #10 AWG. In accordance with Table 250-122 of the National Electrical Code, for this purpose. The housing of the TDX unit is bonded to the grounding
INSTRUCTION SHEET

TDX 50C, TDX 100C, TDX 200C

Conductor for equipment safety ground purposes as per National Electrical Code. The grounding conductor is to be grounded to earth at the service equipment or other acceptable building ground such as the building frame in the case of a high-rise steel-frame structure. Attach the grounding conductor to the panel's ground bus for proper operation. Wire length should be minimized to improve performance. There is no minimum wire length requirement.

Note: For isolated ground systems, bond the grounding conductor from the TDX unit to the non-isolated equipment ground, not the isolated equipment ground.

Connect neutral conductor. The TDX units are supplied with #10AWG leads. The white Neutral conductor is 914mm (3ft) long. Wire length should be minimized to improve performance. There is no minimum wire length requirement. Measure and trim the neutral conductor to be as straight and short as possible. Connect the neutral conductor of the SPD to the neutral lug on the panel.

1. Connect phase conductors. The phase wires are labeled L1, L2, L3. While the orientation is not critical to the operation, it ensures the indication of the TDX matches the relevant phase. With the POWER OFF, connect each black phase lead. Upstream over current protection is not required for the TDX product, and over current protection is integral to the product. It is required to install the TDX downstream or on the load side of the main supply fuse.

* Note: SPDs connected to High Leg Delta systems have one of the phase wires identified by an orange marking. This lead must be connected to the high leg (normally Phase B) of the power system.

** Note: In Australia, New Zealand and some other countries it is not permitted to omit over-current protection.

The TDX units are supplied with #10AWG leads. Phase conductors are 610mm (2ft) long. Wire length should be minimized to improve performance. There is no minimum wire length requirement.

6. Connect Remote Monitoring. Dry contacts (N/O, N/C & Common) are located behind the lower mounting plate (end opposite from AC connection gland). To make the actual connection onto the quick-connect remote terminals, temporarily remove the upper mounting plate the unit out of its enclosure, (the one through which the main AC conductors pass) by removing the four attachment screws. Slide the unit out of its enclosure, make the connections to the mating terminals with 2.79mm x 0.51mm (part number: Amp 62585-1) remote spade terminals. To make a connection to the terminals provided for this purpose, remove the metal grommet in the end plate, and install an insulated (nylon*) cable gland (1/2" / 12.7mm) that:

a. Preserves the SPD/panel NEMA enclosure rating.

b. Does not foul the internal PCB or components.

The remote "spade" terminals are labeled as follows:
Terminal 1 – COM
Terminal 2 – NO
Terminal 3 – NC

* cable gland must be watertight with UL 94-V2 rating.

Note: In the “Normal” state Terminal 1 and Terminal 3 are connected. In the event of operation of one of the disconnectors due to an internal fault condition Terminal 1 will be connected to Terminal 2.

Complete the installation of the remote indication circuit wiring by back feeding the alarm wiring out through the insulated (nylon) conduit gland in the lower mounting plate. Reassemble by reattaching both mounting plates.

Remote Status Indicator Dry Contacts are rated at a max 30V resistive load/1.0A, max 125VAC/ 0.3A general use.

7. Nearby Attachment-Plug Receptacles. Any attachment-plug receptacles in the vicinity of the TDX unit are to be of a grounding type, and the grounding conductors serving these receptacles are to be connected to earth ground at the service equipment or other acceptable building earth ground such as the building frame in the case of a high-rise steel-frame structure.

8. Connector and Lugs. Pressure terminals or pressure splicing connectors and soldering lugs used in the installation of the TDX unit shall be identified as being suitable for the material of the conductors. Conductors of dissimilar metals shall not be intermixed in a terminal or splicing connector where physical contact occurs between dissimilar conductors unless the device is identified for the purpose and conditions of use.

9. Activate unit. When the power is applied, the RED diagnostic lights will indicate that the unit is operational and protection is being provided. If the status lights do not illuminate, please recheck any supply fuse as well as the phase, neutral and ground connections.

10. Flush Panel Mounting. For flush panel mounting, please order the flush cover plate and follow the instructions supplied.

11. Alarm Conditions. The RED diagnostic lights will extinguish and the Remote monitoring contacts will change state. Please check the power connections and supply fuses if this condition occurs. If power is being correctly supplied to all phases and the alarm condition remains, the unit requires prompt replacement.

12. Problem Diagnostics. If problems continue after checking the electrical connections, contact your local nVent representative.
13. Fuse Removal

Step 1: Open the unit by removing the four screws located at the cable entry end of the product.

Step 2: Turn over, and remove the four screws holding the fuse cover in place. These screws are tight – use correct screwdriver size to avoid damaging screw head.

Step 3: Use a large flat blade screwdriver to turn the appropriate fuse ejector a quarter turn (90 degrees).

Step 4: The screw ejector lifts one end of the fuse, which may now be removed. Use of screw ejector mechanism avoids damaging the plastic tray.

Replacement Fuse

Replacement fuse for UL Listed TDX models, nVent type fuse, part number TDFUSE must be used, contact your local nVent representative for replacement part ordering advice.

In Australia, the AS1768 and AS4070 standards recommend the use of a 63A HRC cartridge fuse in this application. The fuse should be rated at least 500Vac and have a 51 mm length x 14 mm diameter (note that this is a standard European size, but is not the most commonly used size in Australia).